

Unterrichtsmaterialien in digitaler und in gedruckter Form


Auszug aus:

Analysis - Grundlagen der Differentialrechnung:
Zusammenstellung wichtiger Funktionen

Das komplette Material finden Sie hier:

School-Scout.de

Zusammenstellung Funktionen

Dr. Cornelia Schmieg

29. April 2010

Ganzrationale Funktionen

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \qquad n \in \mathbb{N} \quad a_n \in \mathbb{R} \quad \mathbb{D} = \mathbb{R}$$

$$n \in \mathbb{N}$$
 $a_n \in \mathbb{R}$ $\mathbb{D} = \mathbb{I}$

z.B.
$$f(x) = 3x^4 + x^2 - \frac{1}{2}x + 2$$

$$a_4 = 3$$
, $a_3 = 0$, $a_2 = 1$, $a_1 = -\frac{1}{2}$, $a_0 = 2$

Grenzwerte:

$$\lim_{x\to\pm\infty}=\pm\infty$$

Ist n gerade und a_n positiv dann gilt:

$$\lim_{x \to +\infty} = +\infty \quad \lim_{x \to -\infty} = +\infty$$

wenn a_n negativ ist gilt:

$$\lim_{x \to +\infty} = -\infty \qquad \lim_{x \to -\infty} = -\infty$$

$$W = begrenzt$$

Es existiert ein absolutes Minimum bzw. Maximum.

Ist n ungerade und a_n positiv dann gilt:

$$\lim_{x \to +\infty} = +\infty \quad \lim_{x \to -\infty} = -\infty$$

wenn a_n negativ ist gilt:

$$\lim_{x \to +\infty} = -\infty \quad \lim_{x \to -\infty} = +\infty$$

$$\mathbb{W}=\mathbb{R}$$

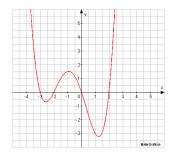


Abbildung 1: größter Exponent gerade $a_n>0$ hier: $f(x)=x^4+3x^3-4x^2-12x$

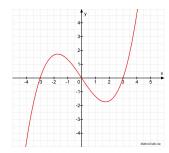


Abbildung 2: größter Exponent ungerade $a_n>0$ hier: $f(x)=2x^3-18x$

Unterrichtsmaterialien in digitaler und in gedruckter Form


Auszug aus:

Analysis - Grundlagen der Differentialrechnung:
Zusammenstellung wichtiger Funktionen

Das komplette Material finden Sie hier:

School-Scout.de

