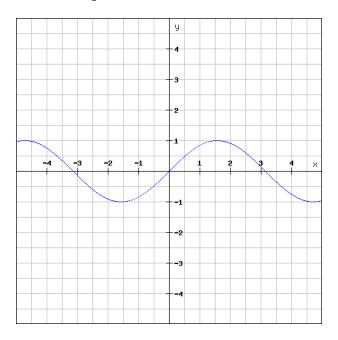


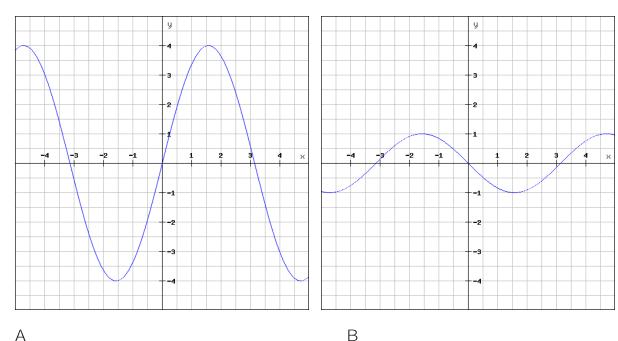
Unterrichtsmaterialien in digitaler und in gedruckter Form

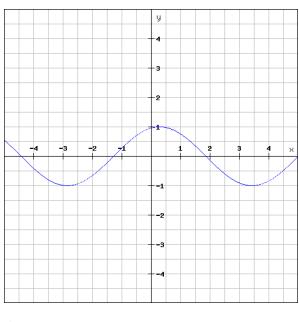
Auszug aus:

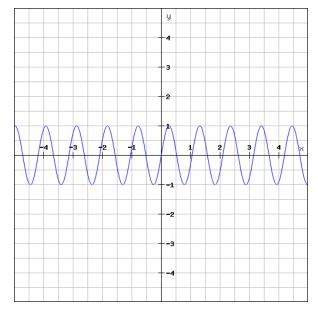
Funktionen

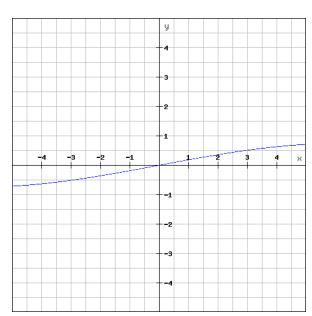

Das komplette Material finden Sie hier:

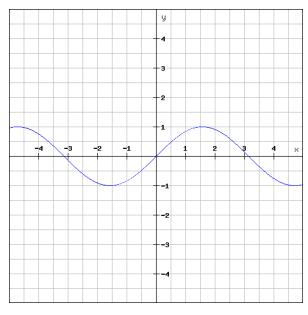
School-Scout.de




Aufgabe 2:


a) Beschreibe wesentliche Eigenschaften der Sinusfunktion.


b) Ordne richtig zu und beschreibe was in Hinblick auf die Sinusfunktion sin(x) anders ist.



С

D

Ε

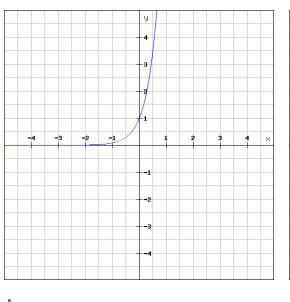
F

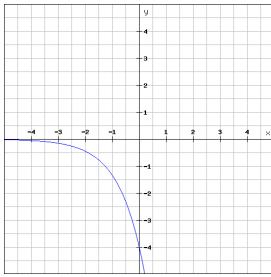
$$(1) f(x) = \sin x$$

$$(2) f(x) = 4 \sin x$$

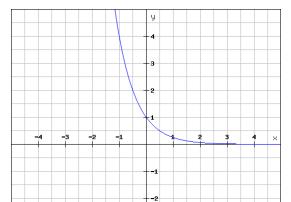
$$(1) f(x) = \sin (2) f(x) = 4 \sin x (3) f(x) = \sin(x-5)$$

$$(4) f(x) = \frac{3}{4} \sin\left(\frac{1}{4}x\right)$$
 (5) $f(x) = \sin 6x$ (6) $f(x) = -\sin x$

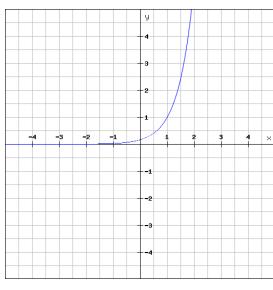

$$(5) f(x) = \sin 6x$$


$$(6) f(x) = -\sin x$$

Aufgabe 3


Exponentialfunktionen werden beispielsweise durch Funktionsgleichungen $f(x) = c \cdot a^x$ ausgedrückt.

Ordne die Graphen ihren Funktionsgleichungen zu.



Α

В

C

D

$$f(x) = \left(\frac{1}{4}\right)^x$$
 $f(x) = 12^x$ $f(x) = \frac{1}{6} \cdot 6^x$ $f(x) = -4 \cdot 3^x$

$$f(x) = 12^{3}$$

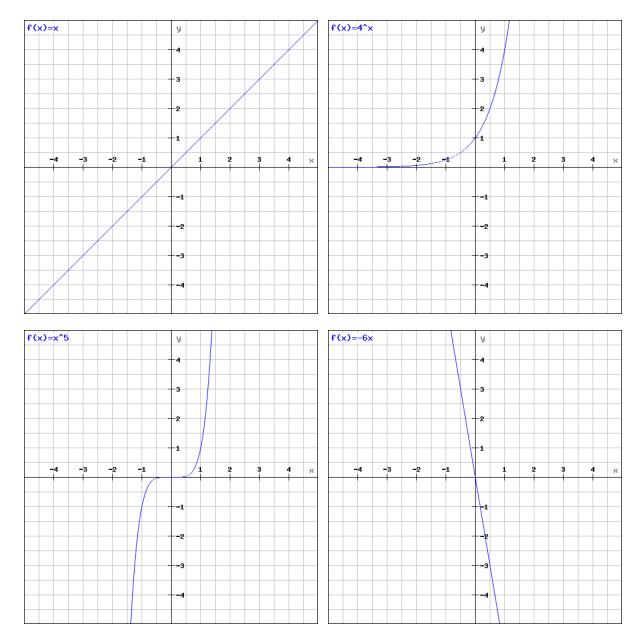
$$f(x) = \frac{1}{6} \cdot 6^{3}$$

$$f(x) = -4 \cdot 3^x$$

b) Welche Auswirkungen auf den Graphen der Exponentialfunktion hat eine Veränderung des Parameter a?

Aufgabe 4:

6 Fragen zu Potenzfunktionen!


TIPP: evtl. hilft es euch, wenn ihr Zeichnungen macht um euch die Situation zu verdeutlichen.

- 1. Frage: Was geschieht wenn der Parameter n bei geraden Potenzfunktionen erhöht wird?
- 2. Frage: Wie sieht die Potenzfunktion aus, wenn n=1 ist?
- 3. Frage: Welches Monotonieverhalten weisen Potenzfunktionen mit ungeradem n auf?
- 4. Frage: Was passiert mit der Potenzfunktion, wenn n<1 ist?
- 5. Frage: Wie sehen Potenzfunktionen mit der Funktionsgleichung $f(x) = -x^n$ aus (gerade oder ungerade)? Skizziere!
- 6. Frage: Was für Eigenschaften haben Potenzfunktionen mit negativen ganzzahligen Exponenten? Fertige eine Tabelle an!

Aufgabe 5:

Umkehrfunktionen entstehen durch das Auflösen der Funktionsgleichung nach x und anschließendem Austauschen von x und y (oder in umgekehrter Reihenfolge).

Bilde die Umkehrfunktionen zu den Graphen in Abb. 1-4 und skizziere sie in das Koordinatensystem (wenn nötig, schränke den Definitionsbereich ein). TIPP: Falls du richtig gerechnet bzw. gezeichnet hast, ist der Graph der Umkehrfunktion eine Spiegelung der Ausgangsfunktion an der Winkelhalbierenden.

Aufgabe 6:

Die Graphen (1) einer linearen Funktion, (2) einer Exponentialfunktion sowie (3) einer Potenzfunktion sollen alle durch die Punkte Q(2|4) und Q(3|1) verlaufen.

- a) Bestimme die Funktionsgleichung der unterschiedlichen Graphen.
- b) Skizziere die Funktionsgraphen in unterschiedlichen Farben in ein Koordinatensystem.

Aufgabe 7:

Gegeben:
$$f(x) = x^2 + 5x + 3$$
 und $g(x) = 1.5x$

- a) Berechne den Schnittpunkt von f(x) und g(x).
- b) Zeichne beide Graphen in ein Koordinatensystem.

Aufgabe 8:

Folgende Datenreihen gehören zu linearem, quadratischen und exponentiellem Wachstum.

a) Ordne die Datenreihen jeweils der passenden Wachstumsform zu.

	X	0	1	2	3	4
(1)	f(x)	2	7	12	17	22
(2)	f(x)	4	5	7	11	19
(3)	f(x)	6	13	26	45	70

b) Gib die Funktionsgleichung zu den verschiedenen Wachstumstypen an.

Unterrichtsmaterialien in digitaler und in gedruckter Form

Auszug aus:

Funktionen

Das komplette Material finden Sie hier:

School-Scout.de

